









































| ZAL:                                                                                                    | quaar                                         | atic                                    | assig                                        | nme                                          | nt pr                                        | oblem                                                            |                                                    |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|
| Allc                                                                                                    | ocate <i>n</i> ad                             | ctivities                               | to <i>n</i> loca                             | ations.                                      | <i>π</i> ( <i>i</i> ): act                   | ivity assign                                                     | ied to <i>i</i> .                                  |
|                                                                                                         | d a perm<br>unt the flo                       |                                         |                                              |                                              |                                              | nction by ta<br>vities                                           | aking into                                         |
| $\pi_{opt} = \arg\min_{\pi \in \Pi(n)} C(\pi) \qquad C(\pi) = \sum_{i,j=1}^{n} d_{ij} f_{\pi(i)\pi(j)}$ |                                               |                                         |                                              |                                              |                                              |                                                                  |                                                    |
|                                                                                                         |                                               |                                         |                                              |                                              |                                              |                                                                  |                                                    |
|                                                                                                         | Nugent<br>(7)                                 | Nugent<br>(12)                          | Nugent<br>(15)                               | Nugent<br>(20)                               | Nugent<br>(30)                               | Elshafei<br>(19)                                                 | Krarup<br>(30)                                     |
| A                                                                                                       |                                               |                                         |                                              |                                              |                                              |                                                                  |                                                    |
|                                                                                                         | (7)                                           | (12)                                    | (15)                                         | (20)                                         | (30)                                         | (19)                                                             | (30)                                               |
| S                                                                                                       | (7)<br>148                                    | (12)<br>578                             | (15)<br>1150                                 | (20)<br>2570                                 | (30)<br>6128                                 | (19)<br>17937024                                                 | (30) 89800                                         |
| TS<br>GA                                                                                                | (7)<br>148<br>148                             | (12)<br>578<br>578                      | (15)<br>1150<br>1150                         | (20)<br>2570<br>2570                         | (30)<br>6128<br>6124                         | (19)<br>17937024<br>17212548                                     | (30)<br>89800<br>90090                             |
| S<br>GA<br>ES                                                                                           | (7)<br>148<br>148<br>148                      | (12)<br>578<br>578<br>588               | (15)<br>1150<br>1150<br>1160                 | (20)<br>2570<br>2570<br>2688                 | (30)<br>6128<br>6124<br>6784                 | (19)<br>17937024<br>17212548<br>17640584                         | (30)<br>89800<br>90090<br>108830                   |
| TS<br>GA<br>ES<br>GC<br>AS-QAP                                                                          | (7)<br>148<br>148<br>148<br>148<br>148        | (12)<br>578<br>578<br>588<br>598        | (15)<br>1150<br>1150<br>1160<br>1168         | (20)<br>2570<br>2570<br>2688<br>2654         | (30)<br>6128<br>6124<br>6784<br>6308         | (19)<br>17937024<br>17212548<br>17640584<br>19600212             | (30)<br>89800<br>90090<br>108830<br>97880          |
| GA<br>TS<br>GA<br>GC<br>GC<br>AS-QAP<br>AS-LS                                                           | (7)<br>148<br>148<br>148<br>148<br>148<br>148 | (12)<br>578<br>578<br>588<br>598<br>578 | (15)<br>1150<br>1150<br>1160<br>1168<br>1150 | (20)<br>2570<br>2570<br>2688<br>2654<br>2570 | (30)<br>6128<br>6124<br>6784<br>6308<br>6154 | (19)<br>17937024<br>17212548<br>17640584<br>19600212<br>17212548 | (30)<br>89800<br>90090<br>108830<br>97880<br>88900 |

| AS-TSI | P : Travelin        | g sale    | esman   | a problem | 22 |
|--------|---------------------|-----------|---------|-----------|----|
|        |                     | Best tour | Average | Std. Dev. |    |
|        | Simulated Annealing |           | 459.8   | 25.1      |    |
|        | Tabu search         | 420       | 420.6   | 1.5       |    |
|        | AS-TSP              | 420       | 420.4   | 1.3       |    |
|        |                     |           |         |           |    |

|   | Potential Vectors                                                                                                                                                     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $d_i = \sum_{j=1}^n d_{ij}$ $f_h = \sum_{k=1}^n f_{hk}$ $E = \overline{d} \cdot \overline{f}^T$                                                                       |
| • | An initial solution is constructed using the minimax rule:<br>The reminding location with lowest potential receives the reminding<br>activity with highest potential. |
| • | The ant algorithm is applied: it goes through locations with increasing potential, with:                                                                              |
|   | $\eta_{ij} = d_i \cdot f_j$                                                                                                                                           |
|   | $\Delta \tau_{ii}^{k} = Q/C^{k}(t)$ if ant k chose allocation $(i, j)$                                                                                                |

## Dynamics

Many problems are by nature dynamic. Their formulation varies as time goes, either because the system's internal characteristics change, or because external conditions change. 25

Variation time scale is essential. It is sometimes impossible to apply an exhaustive method. Optimization must be dynamic.

Variations may be so rapid that optimization becomes less important than fulfulling the task.

## Robustness and flexibility

Robustness : For example, an assembly line is robust if production continues when a machine fails. Robustness degree : How many machines may break down without (too) affecting production ?

Flexibility : an assembly line is flexible if it can react to changing demands. Degree of flexibility : What is the reaction time, and what amount of fluctuation can it tolerate?

## 26 Robustness and flexibility \* *Robustness* : A system is robust if it keeps functioning efficiently even if some of its constituent parts fail. \* *Flexibility* : A système is said to be flexible if it can efficiently function when external conditions change.

Optimization with artificial ants

Why does it work at all?

Fundamental principle: reinforcement of partial solutions and global dissipation. This principle presuppose that the problem be structured (ex : ants perform well on structured instances of QAP).

Other important principle: keep a distributed trace of past exploration. Optimization efficiency and reaction to changing conditions are improved, because of the distributed memory of alternate solutions.















## Results (with AntNet) Poisson traffic on NSFNET, various interarrival times. ∎2.8 ∎2.7 ■2.6 ■2.5 ■2.4 Daemo PQ-R Q-R Q-F BF SPE SP OSPF AntNet AntNe 0.0 1.0 2.0 3.0 4.0 ۶ 10 11 12 90-th percentile of packet delays (sec) Throughput (10<sup>e</sup> bit/sec) OSPF: Open Shortest Path First (current Internet routing algorithm), SPF: Shortest Path First, BF: Bellmann-Ford, [P]QR: [Predictive] Q-Routing























































